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In other words, the electrostatic potential (V)

/\/// ; R at any point in a region with electrostatic field is
s the work done in bringing a unit positive
EB‘L i e / charge (without acceleration) from infinity to

that point.
@a The qualifying remarks made earlier regarding
GB'L Oq, potential energy also apply to the definition of
© potential. To obtain the work done per unit test

q

! charge, we should take an infinitesimal test charge
FIGURE 2.2 Work done on a test charge g 6q, obtain the work done 6W in bringing it from

by the electrostatic field due to any given infinity to the point and determine the ratio
charge configuration is independent 8W/8q. Also, the external force at every point of the
of the path, and depends only on th is to be equal and opposite to the eléctrostatic

its initial and final positions. pa q pp

force on the test charge at that point.

2.3 POTENTIAL DUE TO A PoINT CHARGE

Consider a point charge Q at the origin (Fig. 2.3). For definiteness, take Q
to be positive. We wish to determine the potential at any point P with
position vector r from the origin. For that we must
_~~® calculate the work done in bringing a unit positive
/,’%’\‘; test charge from infinity to the point P. For Q> 0,
 SG S Te the work done against the repulsive force on the
/ P i test charge is positive. Since work done is
independent of the path, we choose a convenient
* path — along the radial direction from infinity to
a the point P.

At some intermediate point P’ on the path, the
electrostatic force on a unit positive charge is

8]

FIGURE 2.3 Work done in bringing a unit

positive test charge from infinity to the Qx1 _,
point P, against the repulsive force of Aner'? (2.5)
charge Q (Q > 0), is the potential at P due to o
the charge Q. where I’is the unit vector along OP’. Work done

against this force from r’'tor’ +Ar’is

Qo .

AW =———Ar
Ang,r (2.6)
The negative sign appears because for Ar’ < 0, AW is positive. Total
work done (W) by the external force is obtained by integrating Eq. (2.6)

fromr'=wtor'=r

W=—I4Q,zdr'= e -2 (2.7)
- dne,r Ane,r’|. Amer
This, by definition is the potential at P due to the charge Q
Q
Vir)=
54 ") Ameyr (2.8)
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Equation (2.8) is true for any
sign of the charge O, though we
considered @ > 0 in its derivation.
For <0, V<0, i.e., work done (by
the external force) per unit positive
test charge in bringing it from
infinity to the point is negative. This
is equivalent to saying that work
done by the electrostatic force in
bringing the unit positive charge
form infinity to the point P is
positive. [This is as it should be,
since for Q) < 0, the force on a unit
positive test charge is atiractive, so
that the electrostatic force and the
displacement (from infinity to P) are
in the same direction.] Finally, we
note that Eq. (2.8) is consistent with
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FIGURE 2.4 Variation of potential V with r [in units of
(@/4me,) m'] (blue curve) and field with r [in units

of [Q,f—'lrtr[}} m™] (black curve) for a point charge Q.

the choice that potential at infinity
be zero.

Figure (2.4) shows how the electrostatic potential (o< 1/r) and the
electrostatic field (< 1/r*) varies with r.

Example 2.1

(a) Calculate the potential at a point P due to a charge of 4 % 107°C
located 9 em away.

(b) Hence obtain the work done in bringing a charge of 2 x 107 C
from infinity to the point P. Does the answer depend on the path
along which the charge is brought?

Solution
=
@ V=t @ -9x10°Nm? c2x2X10°C
4ne, T 0.09m
=4x10'V
(b) W=qV=2x107C x4 % 10*V
=8x 10°%J
No, work done will be path independent. Any arbitrary infinitesimal
path can be resolved into two perpendicular displacements: One along

r and another perpendicular to r. The work done corresponding to
the later will be zero.

2.4 POTENTIAL DUE TO AN ELECTRIC DIPOLE

As we learnt in the last chapter, an electric dipole consists of two charges
gand —q separated by a (small) distance 2a. Its total charge is zero. It is
characterised by a dipole moment vector p whose magnitude is g X 2a
and which points in the direction from —q to g (Fig. 2.5). We also saw that
the electric field of a dipole at a point with position vector r depends not
just on the magnitude r, but also on the angle between r and p. Further,
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™ Physics
_.--=37p the field falls off, at large distance, not as
_ I 1/r? (typical of field due to a single charge)
T et ® i BT ol but as 1/r°. We, now, determine the electric
P -l g potential due to a dipole and contrast it
A e o f// with the potential due to a single charge.
L P As before, we take the origin at the
‘a At g centre of the dipole. Now we know that the
| & o e e electric field obeys the superposition
2a :—\ g principle. Since potential is related to the
FI 1 o it work done by the field, electrostatic
3 potential also follows the superposition
a ’.// principle. Thus, the potential due to the
P dipole is the sum of potentials due to the
v :q charges gand —q
1 fa_a 0 &
FIGURE 2.5 Quantities involved in the calculation Adne, \n 2.9)
of potential due to a dipole, where r, and r, are the distances of the
point P from g and —q, respectively.
Now, by geometry,
it =r* +a® —2ar cosf
r, =1’ +a*+2ar cosf (2.10)
We take rmuch greater than a (r >> @) and retain terms only upto
the first order in a/r
2
1_12:]'_2[1_2300594_&2 ]
5 r
2acosf
Erz(l————] (2.11)
-
Similarly,
. 2acosf
2=r* (l+—r J (2.12)
Using the Binomial theorem and retaining terms upto the first order
in a/r; we obtain,
11 2acos8) ' _1 a
—E—[l——] =—|1+—cos#8 [2.13(a)]
n T r r r
L=1(1+M)'”2=£(1_5m59] ) 1s
r, T r r r [2.13()]
Using Egs. (2.9) and (2.13) and p = 2qga, we get
ve 4 2acosf!  pcosf
dre, r’ 411:80!'2 (2.14)
56 Now, pcos 8= p.r
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where f is the unit vector along the position vector OP.
The electric potential of a dipole is then given by

1 p.r

e, r_z : (r>>a) (2.15)

Equation (2.15) is, as indicated, approximately true only for distances
large compared to the size of the dipole, so that higher order terms in

a/rare negligible. For a point dipole p at the origin, Eq. (2.15) is, however,
exact.

From Eq. (2.15), potential on the dipole axis (8= 0, nt) is given by

V=

1
V=i4u£°;§- (2.16)
(Positive sign for 8 = 0, negative sign for 6 = n.) The potential in the
equatorial plane (6= xn/2) is zero.
The important contrasting features of electric potential of a dipole
from that due to a single charge are clear from Eqgs. (2.8) and (2.15):
(i) The potential due to a dipole depends not just on r but also on the
angle between the position vector r and the dipole moment vector p.
(It is, however, axially symmetric about p. That is, if you rotate the
position vector r about p, keeping 6 fixed, the points corresponding
to P on the cone so generated will have the same potential as at P.)
(if) The electric dipole potential falls off, at large distance, as 1/ r*, not as
1/r, characteristic of the potential due to a single charge. (You can
refer to the Fig. 2.5 for graphs of 1/r” versus r and 1/r versus r,
drawn there in another context.)

2.5 POTENTIAL DUE TO A SYSTEM OF CHARGES

Consider a system of charges q,, q,..... q, with position vectorsr, r,,...,
r_relative to some origin (Fig. 2.6). The potential V, at P due to the charge
q,is

1 a
4ne, np
where r, is the distance between g, and P.

ae
[
Similarly, the potential V, at P due to g, and o b
V, due to g, are given by P <o /
vel@ y.1a w
oAngyn, ' T Ang ?/ T
P
P 1_“"—--. q

e4q,
where r,, and r,;, are the distances of P from

charges g, and q,, respectively; and so on for the
potential due to other charges. By the FIGURE 2.6 Potential at a point due to a
superposition principle, the potential Vat P due system of charges is the sum of potentials
to the total charge configuration is the algebraic due to individual charges.
sum of the potentials due to the individual
charges

V=V, +V,+...+V, (2.17) 57
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